Главная » Статьи » Навчання » Алгебра [ Добавить статью ]

Властивості тригонометричних функцій
Властивості тригонометричних функцій

Функція у = sin х.

Графік функції – синусоїда.

Область визначення – вся числова пряма.

Область значень – проміжок від –1 до 1, включаючи –1 і 1.

Функція непарна: sin – х = – sin х 

Найменший додатний період 2p.

Нулі функції в точках з абсцисами х = pп, де п  – цілі числа.

Функція набуває додатних значень на проміжку від 0 до p і всіх проміжках, що повторюються через період функції.

Функція набуває від’ємних значень на проміжку від p до 2p і всіх проміжках, що повторюються через період функції.

Функція зростає на проміжку від –1/2p до 1/2p і всіх проміжках, що повторюються через період функції.

Функція спадає на проміжку від 1/2p до 1/2 × 3p і всіх проміжках, що повторюються через період функції.

 

Функція у = sin х.

Графік функції — косинусоїда. 

Область визначення – вся числова пряма.

Область значень — проміжок від –1 до 1, включаючи –1 і 1.

Функція парна: cos (–х) = cos х.

Найменший додатний період 2p.

Нулі функції в точках з абсцисами х = 1/2p + p п, де п – цілі числа.

Функція набуває додатних значень на проміжку від –1/2p до 1/2p і всіх проміжках, що повторюються через період функції.

Функція набуває від’ємних значень на проміжку від 1/2p до 1/2  3p і всіх проміжках, що повторюються через період функції.

Функція зростає на проміжку від p до 2p і всіх проміжках, що повторюються через період функції.

Функція спадає на проміжку від 0 до p і всіх проміжках, що повторюються через період функції.

 

Функція у = tg х.

Графік функції – тангенсоїда.

Область визначення – всі дійсні числа, крім х = 1/2 p + p п, де п – цілі числа.

Область значень – всі дійсні числа.

Функція непарна: tg (–х) = –tg х. 

Найменший додатний період p.

Нулі функції в точках з абсцисами х = p п, де п – цілі числа.

Функція набуває додатних значень на проміжку від 0 до 1/2 і всіх проміжках, що повторюються через період функції.

Функція набуває від’ємних значень на проміжку від –1/2p до 0 і всіх проміжках, що повторюються через період функції.

Функція зростає на всій області визначення функції.

Вертикальні асимптоти в точках з абсцисами х = 1/2p + p п.

 

Функція у = сtg х.

Графік функції – котангенсоїда.

Область визначення – всі дійсні числа, крім х = p п, де п – цілі числа.

Область значень – всі дійсні числа.

Функція непарна: сtg (–х) = –сtg х. 

Найменший додатний період p.

Нулі функції в точках з абсцисами х = 1/2p + p п, де п – цілі числа.

Функція набуває додатних значень на проміжку від 0 до 1/2p і всіх проміжках, що повторюються через період функції.

Функція набуває від’ємних значень на проміжку від –1/2p до 0 і всіх проміжках, що повторюються через період функції.

Функція спадає на всій області визначення функції.

Вертикальні асимптоти в точках з абсцисами х = p п.
Категория: Алгебра | Добавил: DEN-SHP (15.10.2012)
Просмотров: 1834 | Комментарии: 1 | Рейтинг: 5.0/1
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]